(本小题满分12分)已知数列满足:,且().(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)求下表中前行所有数的和……………………………
若a,b是两个不共线的非零向量,t∈R.若|a|=|b|=2且a与b夹角为60°,t为何值时,|a-tb|的值最小?
已知定义在R上的奇函数 f(x)有最小正周期2,且当x∈(0,1)时, f(x)=.(1) 求 f(x)在[-1,1]上的解析式;(2) 证明: f(x)在(0,1)上是减函数.
已知sinα=,求tan(α+)+.
已知函数, (Ⅰ)若函数在上是减函数,求实数的取值范围;(Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;(III)当时,证明:
已知斜三棱柱的底面是直角三角形,,侧棱与底面所成角为,点在底面上射影D落在BC上.(Ⅰ)求证:平面;(Ⅱ)若点D恰为BC中点,且,求的大小;(III)若,且当时,求二面角的大小.