已知构成某系统的元件能正常工作的概率为p(0<p<1),且各个元件能否正常工作是相互独立的.今有2n(n大于1)个元件可按下图所示的两种联结方式分别构成两个系统甲、乙.(1)试分别求出系统甲、乙能正常工作的概率p1,p2;(2)比较p1与p2的大小,并从概率意义上评价两系统的优劣.
(本小题满分12分)如图,椭圆的焦点在轴上,左右顶点分别为,上顶点为,抛物线分别以、为焦点,其顶点均为坐标原点,与相交于直线上一点. (1)求椭圆及抛物线的方程; (2)若动直线与直线垂直,且与椭圆交于不同的两点,已知点,求的最小值.
(本小题共12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动. (1)当点E为BC的中点时, 证明EF//平面PAC; (2)求三棱锥E-PAD的体积; (3)证明:无论点E在边BC的何处,都有PEAF.
(本小题满分12分)设数列的前项和为,点均在函数的图象上. (1)求数列的通项公式; (2)若为正项等比数列,且,,求数列的前n项和.
(本小题满分12分)在中, 分别是角的对边,且. (1)求的大小; (2)若,,求的面积.
(本小题满分12分)设函数 (1)写出函数的最小正周期及单调递减区间; (2)当时,函数的最大值与最小值的和为,求实数的值.