如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=45°,OA⊥底面ABCD,OA=2,M为OA的中点. (1)求异面直线AB与MD所成角的大小; (2)求平面OAB与平面OCD所成二面角的余弦值.
已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.(1)求k的值,并求的单调区间;(2)设,其中为的导函数.证明:对任意.
设函数,,其中为实数,若在上是单调减函数,且在上有最小值,求的取值范围.
已知数列{}满足+=2n+1 ()(1)求出,,的值;(2)由(1)猜想出数列{}的通项公式,并用数学归纳法证明.
现有5名男司机,4名女司机,需选派5人运货到吴忠.(1)如果派3名男司机、2名女司机,共多少种不同的选派方法?(2)至少有两名男司机,共多少种不同的选派方法?
复数,.(1)为何值时,是纯虚数?取什么值时,在复平面内对应的点位于第四象限?(2)若()的展开式第3项系数为40,求此时的值及对应的复数的值.