(本小题满分13分)如图,平面α⊥平面β,A∈α,B∈β,AB与平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=12,求A′B′的长度.
选修4-5:不等式选讲 已知函数. (Ⅰ)若不等式的解集为空集,求实数的取值范围; (Ⅱ)若且,求证:.
选修4-4:坐标系与参数方程 在直角坐标系中,设倾斜角为的直线:,(为参数)与曲线,(为参数)相交于不同两点、. (Ⅰ)若,求线段中点的坐标; (Ⅱ)若,其中,求直线的斜率.
选修4-1:几何证明选讲 如图,直线经过上的点,并且交直线于,连结 (Ⅰ)证明:直线是的切线; (Ⅱ)若,的半径为3,求的长.
已知函数f (x)=x2-ax3(a>0),x∈R . (Ⅰ)求f (x)的单调区间和极值; (Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f (x1)·f (x2)=1,求a的取值范围.
已知一条曲线C在y轴右边,C上每一点到点的距离减去它到y轴距离的差都是.点A,B在曲线C上且位于x轴的两侧,=2(其中O为坐标原点). (Ⅰ)求曲线C的方程; (Ⅱ)证明:直线AB恒过定点.