某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试时间间隔恰当,每次测试通过与否互相独立.(1)求该学生考上大学的概率;(2)求该学生经过4次测试考上大学的概率.
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程; (3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。 (相关公式:)
如图,在平行六面体ABCD-A1B1C1D1中,四边形ABCD与四边形CC1D1D均是边长为1的正方形,∠ADD1="120°" ,点E为A1B1的中点,点P,Q分别是BD,CD1上的动点,且. (1)当平面PQE//平面ADD1A1时,求的值. (2)在(1)的条件下,求直线QE与平面DQP所成角的正弦值.
已知函数f(x)=4cosxsin-1. (1)求f(x)的最小正周期; (2)求f(x)在区间上的最大值和最小值.
已知数列的前n项和 (1)令,求证数列是等差数列,并求数列的通项公式; (2)令,求数列的前项和; (3)试比较与的大小(不需证明).
某企业生产两种产品,每生产吨产品所需的劳动力、煤、电消耗及利润如下表:
因条件限制,该企业仅有劳动力个,煤吨,供电局最多供电千瓦时,试问该企业生产两种产品各多少吨时能获得最大利润?并求最大利润.