(本小题满分14分)如图,四面体ABCD中,O,E分别为BD,BC的中点,CA=CB=CD=BD=2,AB=AD=.(1)求证:AO⊥平面BCD;(2)求点E到平面ACD的距离.
(本小题满分12分)已知函数.(Ⅰ)当时,求关于的不等式解集;(Ⅱ)当时,若恒成立,求实数的最大值.
(本小题满分12分)已知椭圆:的离心率为,其中左焦点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于不同的两点,且线段的中点在圆上,求的值.
(本小题满分12分)在等差数列中,公差,是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前项和为,求.
(本小题满分12分)已知在等比数列中,,且是和的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求的前项和.
(本小题满分10分) 已知椭圆的中心在坐标原点,右焦点为,、分别是椭圆的左右顶点,是 椭圆上的动点. (Ⅰ)若面积的最大值为,求椭圆的方程; (Ⅱ)过右焦点做长轴的垂线,交椭圆于、两点,若,求椭圆的 离心率.