将正△ABC分割成n2(n≥2,n∈N)个全等的小正三角形(图乙,图丙分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列,若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,求f(3)和f(n).
已知函数,,且 求的值; 设,,,求的值.
某寄宿制学校的一间宿舍里住着若干名学生,其中一人担任舍长.元旦时,该宿舍里的每名学生互赠一张贺卡,且每人又赠给宿舍楼的每位管理员一张贺卡,每位管理员也回赠舍长一张贺卡,这样共用去了51张贺卡,问这间宿舍里住有多少名学生?
如图,已知菱形ABCD,∠B=60°.△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点,直线BC与AM交于点Q,求证:P、D、Q三点共线.
已知如图,抛物线与x轴相交于B(,0)、C(,0) ( 均大于0)两点, 与y轴的正半轴相交于A点. 过A、B、C三点的⊙P与y轴相切于点A,其面积为. (1)请确定抛物线的解析式; (2)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).
已知为整数,给出如下三个关于方程: ①②③ 若方程①有两个相等的实数根,方程②③有且仅有一个方程有两个不相等的实数根,求的值.