如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?
如图,直线 l 与 ⊙O 相离, OA⊥l 于点 A ,与 ⊙O 相交于点 P , OA=5 . C 是直线 l 上一点,连结 CP 并延长交 ⊙O 于另一点 B ,且 AB=AC .
(1)求证: AB 是 ⊙O 的切线;
(2)若 ⊙O 的半径为3,求线段 BP 的长.
已知关于 x 的一元二次方程 x 2 -(k+4)x+4k=0 .
(1)求证:无论 k 为任何实数,此方程总有两个实数根;
(2)若方程的两个实数根为 x 1 、 x 2 ,满足 1 x 1 + 1 x 2 = 3 4 ,求 k 的值;
(3)若 RtΔABC 的斜边为5,另外两条边的长恰好是方程的两个根 x 1 、 x 2 ,求 RtΔABC 的内切圆半径.
某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据条形统计图中提供的信息,回答下列问题:
(1)张老师抽取的这部分学生中,共有 名男生, 名女生;
(2)张老师抽取的这部分学生中,女生成绩的众数是 ;
(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.
如图,已知过点 B(1,0) 的直线 l 1 与直线 l 2 :y=2x+4 相交于点 P(-1,a) .
(1)求直线 l 1 的解析式;
(2)求四边形 PAOC 的面积.
化简: x 2 - 2 x + 1 x 2 - 1 ÷ x 2 - x x + 1 .