已知函数的图象过点P( 1,2),且在点P处的切线与直线x-3y=0垂直.(2) 若,试求函数f(x)的单调区间;(3) 若a>0,b>0且(,m),(n,)是f(x)的单调递增区间,试求n-m-2c的范围
已知为椭圆,的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设. (1)证明:成等比数列; (2)若的坐标为,求椭圆的方程; (3)在(2)的椭圆中,过的直线与椭圆交于、两点,若,求直线的方程.
设是函数()的两个极值点 (1)若,求函数的解析式; (2)若,求的最大值。
如图,在直三棱柱中,,点是的中点。 (1)求证:∥平面 (2)如果点是的中点,求证:平面平面.
已知函数 (1)求函数的最小值和最小正周期; (2)设△ABC的内角的对边分别为a,b,c且=,,若向量共线,求的值.
在某次测验中,有6位同学的平均成绩为75分.用表示编号为()的同学所得成绩,且前5位同学的成绩如下:70,76,72,70,72 (1)求第6位同学的成绩,及这6位同学成绩的标准差; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.