(本小题满分12分)已知椭圆的离心率为其左、右焦点分别为,点P是坐标平面内一点,且(O为坐标原点)。(1)求椭圆C的方程;(2)过点且斜率为k的动直线交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标;若不存在,说明理由。
已知函数在定义域上为增函数,且满足, .(Ⅰ) 求的值; (Ⅱ) 解不等式.
设是定义在R上的奇函数,且对任意a、b,当时,都有.(1)若,试比较与的大小关系;(2)若对任意恒成立,求实数k的取值范围.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量。(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润总收益总成本)
已知函数.⑴判断函数的奇偶性,并证明;⑵利用函数单调性的定义证明:是其定义域上的增函数.
已知全集,集合,,(1)求、;(2)若集合是集合A的子集,求实数k的取值范围.