. 已知函数,(Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。(Ⅱ)若为奇函数:(1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;(2)如果当时,都有恒成立,试求的取值范围.
(本小题满分10分) 已知向量设函数 (1)求的最小正周期与单调递减区间; (2)在△ABC中分别是角A、B、C的对边,若△ABC的面积为,求的值.
.(本题满分12分) 已知四棱锥的底面为直角梯形,//,,底面,且. (1)证明:平面; (2)求二面角的余弦值的大小.
(本题满分12分) 已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于和,且,,求椭圆的方程.
(本题满分12分)设为抛物线的焦点,为抛物线上任意一点,已为圆心,为半径画圆,与轴负半轴交于点,试判断过的直线与抛物线的位置关系,并证明。
(本题满分12分) 求圆心在直线上,且经过圆与圆的交点的圆方程.