(本小题满分8分)已知(i为虚数单位),求复数z.
(本小题满分l2分)已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn(n∈N*).(1)求数列{an}和{bn}的通项公式;(2)若Tn=++…+,求Tn的表达式
(本小题满分l2分)已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点.(Ⅰ)求椭圆的方程;(Ⅱ)证明以线段为直径的圆经过焦点.
(本小题满分l2分)已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明:;(2)判断并说明上是否存在点,使得∥平面;(3)若与平面所成的角为,求二面角的余弦值.
(本小题满分l2分)某市第一中学要用鲜花布置花圃中五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.(1)当区域同时用红色鲜花时,求布置花圃的不同方法的种数;(2)求恰有两个区域用红色鲜花的概率;(3)记为花圃中用红色鲜花布置的区域的个数,求随机变量的分布列及其数学期望.
(本小题满分12分) 在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c =,且 (1)求角C的大小;(2)求△ABC的面积.