现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名, 站成一排,共有多少种不同的排法?
(本小题满分13分) 如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1. (Ⅰ)求证:AB⊥BC; (Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ.判断θ与φ的大小关系,并予以证明.
(本小题满分13分) 已知直线圆,直线交圆于两点,点满足. (I)当时,求的值; (II)若时,求的取值范围.
(本小题满分12分) 甲、乙两人各抛掷一个六个面分别标有数字的正方体骰子各一次,那么 (I)共有多少种不同的结果? (II)设甲、乙所抛掷骰子朝上的面的点数、分别为一个点的横纵坐标,请列出满足的所有结果; (III)在(II)的条件下,求满足的概率.
(本小题满分12分) 已知向量,且 (Ⅰ)求tanA的值; (Ⅱ)求函数R)的值域.
(本小题满分14分)已知数列是以4为首项的正数数列,双曲线的一个焦点坐标为, 且, 一条渐近线方程为. (1)求数列的通项公式; (2) 试判断: 对一切自然数,不等式是否恒成立?并说明理由.