.已知两直线,求满足下列条件的、的值.直线过点,并且直线与直线垂直;
已知椭圆过点,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过点且斜率为()的直线与椭圆相交于两点,直线、分别交直线 于、两点,线段的中点为.记直线的斜率为,求证: 为定值.
设.(Ⅰ)若,求的单调区间;(Ⅱ) 若对一切恒成立,求的取值范围.
如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.
设函数.(I)求函数的单调递增区间;(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.
已知函数.(Ⅰ)求的最小正周期; (Ⅱ)在△ABC中,角A,B,C所对的边分别是,若且,试判断△ABC的形状.