.(本小题满分10分)在各项均为正数的数列中,前项和满足.(Ⅰ)求,并由此猜想数列的通项公式(不需要证明); (Ⅱ)求.
(本题8分)在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
(本题8分)已知p:,q:,若是的必要不充分条件,求实数m的取值范围。
(本题6分)已知函数。(1)求在处的切线方程;(2)求该切线与坐标轴所围成的三角形面积。
(本题6分)已知双曲线的中心在原点,焦点为F1,F2(—5 ,0),且过点(3,0),(1)求双曲线的标准方程.(2)求双曲线的离心率及准线方程。
如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.(1)建立适当的平面直角坐标系,求曲线C的方程;(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.