(本小题满分14分)给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆C及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.
已知,函数 (1)当时,求的单调递增区间; (2)若的极大值是,求的值.
已知函数,下列结论错误的是()
已知函数f(x)=-x3+ax2+1(a∈R). (1)若函数y=f(x)在区间上递增,在区间上递减,求a的值; (2)当x∈[0,1]时,设函数y=f(x)图象上任意一点处的切线的倾斜角为θ,若给定常数a∈,求的取值范围; (3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1(m∈R)的图象与函数y=f(x)的图象恰有三个交点.若存在,求实数m的取值范围;若不存在,试说明理由.
在平面直角坐标系中,点P到两点(0,-)、(0,)的距离之和等于4.设点P的轨迹为C. (1)写出C的方程; (2)设直线y=kx+1与C交于A、B两点.k为何值时此时||的值是多少?
如图,是以为直径的⊙O上一点,于点,过点作⊙O的切线,与的延长线相交于点是的中点,连结并延长与相交于点,延长与的延长线相交于点. (1)求证:; (2) 若, 求的长.