(本小题满分14分)给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆C及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.
写出命题“当时,或或”的逆命题、否命题、逆否命题,并判断其真假
一颗慧星沿一条以地球为焦点的抛物线运行时,当慧星离地球万公里时,经过地球和慧得的直线与抛物线对称轴的夹角为,求此慧星运行时离地球的最近距离.
已知抛物线的顶点在原点,对称轴为轴,抛物线上一点到焦点的距离为5,求抛物线的标准方程.
求以原点为顶点,坐标轴为对称轴,并且经过点的抛物线的标准方程.
如图,已知向量,可构成空间向量的一个基底,若,在向量已有的运算法则的基础上,新定义一种运算,显然的结果仍为一向量,记作. (1)求证:向量为平面的法向量; (2)求证:以为边的平行四边形的面积等于; (3)将四边形按向量平移,得到一个平行六面体,试判断平行六面体的体积与的大小.