(本小题满分14分)给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆C及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.
命题:关于的不等式对一切恒成立,命题:函数是增函数,若中有且只有一个为真命题,求实数的取值范围.
某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率;(2)其中恰有3次击中目标的概率.
已知函数.(1)若是函数的极值点,求曲线在点处的切线方程;(2)若函数在上为单调增函数,求的取值范围;(3)设为正实数,且,求证:.
已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设、两点的横坐标分别为,,证明:.
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.(1)若M为PA中点,求证:AC∥平面MDE;(2)求直线PA与平面PBC所成角的正弦值;(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?