(本小题满分12分)已知点,,,向量.(1)若向量与共线,求实数的值;(2)若向量,求实数的取值范围.
设椭圆 C : x 2 2 + y 2 = 1 的右焦点为 F ,过 F 的直线 l 与 C 交于 A , B 两点,点 M 的坐标为 ( 2 , 0 ) .
(1)当 l 与 x 轴垂直时,求直线 AM 的方程;
(2)设 O 为坐标原点,证明: ∠ OMA = ∠ OMB .
如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以 DF 为折痕把 折起,使点 C 到达点 P 的位置,且 PF ⊥ BF .
(1)证明:平面 PEF ⊥ 平面 ABFD ;
(2)求 DP 与平面 ABFD 所成角的正弦值.
在平面四边形 ABCD 中, ∠ ADC = 9 0 ∘ , ∠ A = 4 5 ∘ , AB = 2 , BD = 5 .
(1)求 cos ∠ ADB ;
(2)若 DC = 2 2 ,求 BC .
设函数 f ( x ) = 5 - x + a - x - 2 .
(1)当 a = 1 时,求不等式 f ( x ) ≥ 0 的解集;
(2)若 f ( x ) ≤ 1 恒成立,求 a 的取值范围.
在直角坐标系 xOy 中,曲线 C 的参数方程为 x = 2 cosθ y = 4 sinθ ( θ 为参数),直线 l 的参数方程为 x = 1 + tcosα y = 2 + tsinα ( t 为参数).
(1)求 C 和 l 的直角坐标方程;
(2)若曲线 C 截直线 l 所得线段的中点坐标为 1 , 2 ,求 l 的斜率.