.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(1)求证:A1C//平面AB1D;(2)求二面角B—AB1—D的大小;(3)求点C到平面AB1D的距离.
(本小题10分)已知方程的曲线是圆C (1)求的取值范围; (2)当时,求圆C截直线所得弦长;
(满分14分)已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F分别是AB,PD的中点. (1)求证:AF∥平面PEC; (2)求PC与平面ABCD所成的角的正切值; (3)求二面角的正切值.
(满分14分)是定义在上的奇函数, 。 (1)确定函数的解析式; (2)用定义证明函数在上是增函数; (3)解不等式:。
(满分13分)为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m. (1)求直线EF的方程. (2)应如何设计才能使草坪的占地面积最大?
(满分13分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点, 求证:(1)FD∥平面ABC; (2)AF⊥平面EDB.