设两非零向量和不共线,如果=+,=3(-),,求证:A、B、D三点共线。
圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点. (1)求该圆锥的侧面积S; (2)求证:平面PAC平面POD; (3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点. (1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P. (2)在正方形ABCD内部随机取一点P,求满足的概率.
已知函数 (1)求的最小正周期和单调递增区间; (2)已知是三边长,且,的面积.求角及的值.
已知函数. (1)当时,求函数在上的最大值; (2)令,若在区间上不单调,求的取值范围; (3)当时,函数的图像与x轴交于两点,且,又是的导函数,若正常数满足条件.证明:.
的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R. (1)求R的方程; (2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.