ABCD是梯形,AB∥CD,且AB=2CD,M、N分别是DC和AB的中点,已知=,=,试用、表示。
(本小题满分12分)三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ;(2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间;(3)设点A、B、C、D的横坐标分别为,,,求证 ;
(本小题满分12分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。
(本小题满分12分)如图,在多面体中,平面,,且是边长为2的等边三角形,与平面所成角的正弦值为.(Ⅰ)在线段上存在一点F,使得面,试确定F的位置;(Ⅱ)求二面角的平面角的余弦值.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前个小组的频率之比为,其中第小组的频数为.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
(本小题满分12分)在锐角中,三个内角所对的边依次为.设,,,.(Ⅰ)若,求的面积; (Ⅱ)求b+c的最大值.