((本题满分12分)已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求的取值范围;(Ⅱ)求△面积的最大值.
已知在锐角中,为角所对的边,且.(1)求角的值;(2)若,求的取值范围.
已知数列的前项和为,且,()求:(1)数列的通项公式;(2)若,求数列的前项和.
已知函数,其中常数.(1)讨论函数的单调性;(2)已知,表示的导数,若,且满足,试比较与的大小,并加以证明.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)若直线与椭圆相交于两点,且,判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
如图,在四棱锥中,平面,,且,,,点在上.(1)求证:;(2)若二面角的大小为,求与平面所成角的正弦值.