设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
已知角的终边过点,求的六个三角函数值。
不查表,不使用计算器求值。 (1); (2)。
将函数的图像先向右平移个单位,再向下平移两个单位,得到函数的图像. (1)化简的表达式,并求出函数的表示式; (2)指出函数在上的单调性和最大值; (3)已知,,问在的图像上是否存在一点,使得AP⊥BP
如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为 两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°, 30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、 D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01 km,≈1.414,≈2.449).
数列{}是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n项和为,求的最大值;(3)当是正数时,求n的最大值.