设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分; (Ⅲ)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个. (Ⅰ)从中同时摸出两个球,求两球颜色恰好相同的概率; (Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
已知,,当为何值时, (1)与垂直?(2)与平行?平行时它们是同向还是反向?
在平面直角坐标系中,O为坐标原点,已知向量,又点,,. (1)若,且,求向量. (2)若向量与向量共线,常数,当取最大值4时,求.
已知. (1)求函数的最小正周期. (2)求函数在闭区间上的最小值并求当取最小值时,的取值集合.