设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值; (Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()
由四个不同的数字1,2,4,x组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个? (2)若x=9,其中能被3整除的共有多少个? (3)若x=0,其中的偶数共有多少个? (4)若所有这些三位数的各位数字之和是252,求x.
已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止. (1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少? (2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?
某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核. (1)求从甲、乙两组各抽取的人数; (2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取的4名工人中恰有2名男工人的概率.