过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A、B两点.(1)求直线AB的方程;(2)试用表示A、B之间的距离;(3)当时,求的余弦值.参考公式:.
已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.(1)求证:f(x)是周期函数.(2)已知f(-4)=2,求f(2012).
盒子内有大小相同的9个球,其中2个红色小球,3个白色小球,4个黑色小球,规定取出1红色小球得到1分, 取出1白色小球得到0分, 取出1个黑色小球得到-1分,现从盒子中任取3个小球。(1)求取出的3个球颜色互不相同的概率;(2)求取出的3个球得分之和恰好为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列及数学期望.
已知等比数列中,为前项和且,,(1)求数列的通项公式。(2)设,求的前项和的值。
已知函数,在处取得极小值。求a+b的值
已知函数为自然对数的底数).(1)求曲线在处的切线方程;(2)若是的一个极值点,且点,满足条件:.(ⅰ)求的值;(ⅱ)若点是三个不同的点, 判断三点是否可以构成直角三角形?请说明理由。