(本小题满分12)如图,在四棱锥S—ABCD中,已知底面ABCD为直角梯形,其中AD//BC,底面ABCD,SA=AB=BC=2,SD与平面ABCD所成角的正切值为。(Ⅰ)在棱SD上找一点E,使CE//平面SAB,并证明。(Ⅱ)求二面角B—SC—D的余弦值。
(本题8分)在对角线长为定值的所有矩形中,怎样的矩形周长最长?
(本题8分)在极坐标系中,求过极点且圆心在的圆的极坐标方程.
(本题8分)设,求证:
(本小题满分14分) 已知,函数. (1)若函数在区间内是减函数,求实数的取值范围; (2)求函数在区间上的最小值; (3)对(2)中的,若关于的方程有两个不相等的实数解,求实数的取值范围.
(本小题满分14分) 若椭圆:的离心率等于,抛物线:的焦点在椭圆的顶点上。 (Ⅰ)求抛物线的方程; (Ⅱ)求的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程;