(本小题满分12分)已知直线与椭圆交于两点,椭圆上的点到下焦点距离的最大值、最小值分别为,向量,O为坐标原点。 (Ⅰ)求椭圆的方程;(Ⅱ)判断的面积是否为定值,如果是,请给予证明;如果不是,请说明理由。
已知函数.(1)若函数在处取极值,求的值;(2)如图,设直线将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),若函数的图象恰好位于其中一个区域内,判断其所在的区域并求对应的的取值范围;(3)比较与的大小,并说明理由.
如图所示,在棱长为2的正方体中,点分别在棱上,满足,且.(1)试确定、两点的位置.(2)求二面角大小的余弦值.
已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,并与极坐标系取相同的单位长度,直线l的参数方程为( 为参数),求直线l被曲线截得的线段长度.
已知矩阵M =,N =,试求曲线在矩阵MN变换下的函数解析式.
在数列中,,且对任意的,成等比数列,其公比为.(1)若=2(),求;(2)若对任意的,,,成等差数列,其公差为,设.①求证:成等差数列,并指出其公差;②若=2,试求数列的前项的和.