如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2.(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?
如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E. (1)求双曲线的解析式; (2)求四边形ODBE的面积.
如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC绕点O顺时针旋转90°后得到△A1B1C1. (1)在正方形网格中作出△A1B1C1; (2)在旋转过程中,点A经过的路径弧A A1的长度为;(结果保留π) (3)在y轴上找一点D,使DB+DB1的值最小,并求出D点坐标.
如图所示, AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.
已知关于的一元二次方程(为常数). (1)求证:方程有两个不相等的实数根; (2)设,为方程两个实数根,且,试求出方程的两个实数根和的值.
先化简,再求值(1﹣)÷﹣,其中x满足x2+x﹣2=0.