一块矩形纸片,利用割补的办法可以拼成一块与它面积相等的平行四边形(如图1所示):请你根据图1作法的提示,利用图2画出一个平行四边形,使该平行四边形的面积等于所给的矩形面积.要求:(1)画出的平行四边形有且只有一个顶点与B点重合;(2)写出画图步骤;(3)写出所画的平行四边形的名称.
已知 P= 2 a a 2 - b 2 ﹣ 1 a + b ( a≠± b)
(1)化简 P;
(2)若点( a, b)在一次函数 y= x﹣ 2 的图象上,求 P的值.
如图, D是 AB上一点, DF交 AC于点 E, DE= FE, FC∥ AB,求证:△ ADE≌△ CFE.
已知Rt△ OAB,∠ OAB=90°,∠ ABO=30°,斜边 OB=4,将Rt△ OAB绕点 O顺时针旋转60°,如图1,连接 BC.
(1)填空:∠ OBC= °;
(2)如图1,连接 AC,作 OP⊥ AC,垂足为 P,求 OP的长度;
(3)如图2,点 M, N同时从点 O出发,在△ OCB边上运动, M沿 O→ C→ B路径匀速运动, N沿 O→ B→ C路径匀速运动,当两点相遇时运动停止,已知点 M的运动速度为1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为 x秒,△ OMN的面积为 y,求当 x为何值时 y取得最大值?最大值为多少?
如图,四边形 ABCD中, AB= AD= CD,以 AB为直径的⊙ O经过点 C,连接 AC、 OD交于点 E.
(1)证明: OD∥ BC;
(2)若tan∠ ABC=2,证明: DA与⊙ O相切;
(3)在(2)条件下,连接 BD交⊙ O于点 F,连接 EF,若 BC=1,求 EF的长.
如图,已知顶点为 C(0,﹣3)的抛物线 y= ax 2+ b( a≠0)与 x轴交于 A, B两点,直线 y= x+ m过顶点 C和点 B.
(1)求 m的值;
(2)求函数 y= ax 2+ b( a≠0)的解析式;
(3)抛物线上是否存在点 M,使得∠ MCB=15°?若存在,求出点 M的坐标;若不存在,请说明理由.