(本题满分为8分)某商店如果将进价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价,减小进货量的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问应将售价定为多少元时,才能使每天所获利润为640元?
某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?(2)若要使商场平均每天的盈利最多,请你为商场设计降价方案.
箱中装有3张相同的卡片,它们分别写有数字1,2,4;箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从箱、箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出箱中卡片上的数字作为十位上的数字,取出箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.
如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围; (3)求△AOB的面积.
(1)解方程:(2)如图,△ABC各顶点的坐标分别为A(4、4),B(-2,2),C(3,0),①画出它的以原点O为对称中心的△AˊBˊCˊ②写出 Aˊ,Bˊ,Cˊ三点的坐标。(3)已知关于x的方程mx2-(m+2)x+2=0(m≠0).①求证:方程总有两个实数根;②若方程的两个实数根都是整数,求正整数m的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;(2)连接BE,求h为何值时,△BDE的面积最大;(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.