设命题p:函数的定义域为R;命题q:不等式对一切均成立。 (Ⅰ)如果p是真命题,求实数的取值范围; (Ⅱ)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围.
已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是,过直线上一点引椭圆的两条切线,切点分别是A、B. (Ⅰ)求椭圆的方程; (Ⅱ)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点,并求出定点的坐标; (Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数,使得成立,若成立求出的值,若不存在,请说明理由
已知函数. (Ⅰ)讨论函数在定义域内的极值点的个数; (Ⅱ)若函数在处取得极值,对任意的恒成立,求实数的取值范围.
在边长为的菱形中,.现沿对角线把△折起,折起后使的余弦值为. (Ⅰ)求证:平面⊥平面; (Ⅱ)若是的中点,求三棱锥的体积.
如图,港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?