某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.
写出满足下列条件的椭圆的标准方程:(本小题满分10分) (1)长轴长与短轴长的和为18,焦距为6且焦点在轴上 (2) 已知椭圆的中心在原点,且过点
(本小题满分14分) 已知函数f(x)=(a>0且a≠1). (1)求f(x)的定义域和值域; (2)讨论f(x)的奇偶性; (3)讨论f(x)的单调性.
(本小题满分14分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a. (1)求证:MN∥平面PAD; (2)求证:平面PMC⊥平面PCD.
(本小题满分14分) (1)已知△ABC三个顶点的坐标分别为A(4,1),B(0,3),C(2,4),边AC的中点为D,求AC边上中线BD所在的直线方程并化为一般式; (2)已知圆C的圆心是直线和的交点且与直线相切,求圆C的方程.
(本小题满分14分) 已知函数 (1)求函数的最小正周期; (2)确定函数在上的单调性并求在此区间上的最小值.