在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,BC=2cm.(1)求∠CBD的度数;(2)求下底AB的长.
如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,-3).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标; (4)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形?若存在,直接写出出所有满足条件的点F的坐标;若不存在,请说明理由.
如图,Rt△ABC在平面直角坐标系中,BC在x轴上,B (-1,0)、A (0,2),AC⊥AB.(1)求线段OC的长;(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段AC以每秒个单位的速度向点C运 动,当一点停止运动,另一点也随之停止,设△CPQ的面 积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围;(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上、如果有求t值,如果没有说明理由.
周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小明离家的路程y (干米) 与x (小时)之间的函数图象如图所示.(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的速度应是________千米/小时;(2)求线段CD所表示的函数关系式;(3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程.
某电脑公司各种品牌、型号的电脑价格如下表,某中学要从甲、乙两种品牌电脑中各购买一种型号的电脑.
(1)利用树状图写出所有选购方案.如果各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只能选A型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问A型号电脑可以购买多少台?
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.(1)求证:△BCF≌△DCE;(2)若BC=5,CF=3,∠BFC=90°,求DG︰GC的值.