如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,求∠DAC和线段的长
(本小题满分15分)若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”. (Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由; (Ⅱ)若函数为“优美函数”,求实数的取值范围.
.(本小题满分14分)已知集合和. 设关于x的二次函数. (Ⅰ)若时,从集合取一个数作为的值,求方程有解的概率; (Ⅱ)若从集合和中各取一个数作为和的值,求函数在区间上是增函数的概率.
(本小题满分14分) 设全集,已知集合. (Ⅰ)求;(Ⅱ)记集合,已知, 若,求实数的取值范围.
已知函数,,其中,设. (Ⅰ) 判断的奇偶性,并说明理由; (Ⅱ)当时,判断并证明函数的单调性; (Ⅲ) 若,且对于区间[3,4]上的每一个x的值,不等式恒成立,求实数的取值范围.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若把向右平移个单位得到函数,求在区间上的最小值和最大值.