.已知函数f ( x ) = 3x , f ( a + 2 ) =" 18" , g ( x ) =· 3ax – 4x的定义域为[0,1].(Ⅰ)求a的值;(Ⅱ)若函数g ( x )在区间[0,1]上是单调递减函数,求实数的取值范围.
已知等差数列{}满足的前项和为. (1)求及; (2)令(),求数列{}的前项和.
已知,,函数. (1)求的最小正周期,并求其图像对称中心的坐标; (2)当时,求函数的值域.
已知动圆过定点,且与直线相切;椭圆的对称轴为坐标轴,中心为坐标原点,是其一个焦点,又点在椭圆上. (1)求动圆圆心的轨迹的方程和椭圆的方程; (2)过点作直线交轨迹于,两点,连结,,射线,交椭圆于,两点,求面积的最小值. (3)附加题(本题额外加5分):过椭圆上一动点作圆的两条切线,切点分别为,求的取值范围.
已知椭圆,经过点,且两焦点与短轴的一个端点构成等腰直角三角形. (1)求椭圆方程; (2)过椭圆右顶点的两条斜率乘积为的直线分别交椭圆于,两点,试问:直线是否过定点?若过定点,请求出此定点,若不过,请说明理由.
已知抛物线,作斜率为1的直线交抛物线于,两点,交轴于点,弦的中点为. (1)若,求以线段为直径的圆的方程; (2)设,若点满足,求的值.