.如图,在平面直角坐标系中,,,,,设的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点在圆上,使的面积等于12的点有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.
((本小题满分12分) 如图在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的 中点. (1)求证: AC⊥BC1 (2)求证:AC1∥平面CDB1 (3)求异面直线AC1与B1C所成角的余弦值.
(本小题满分12分) 等比数列中,,. (1)求数列的通项公式. (2)若分别是等差数列的第三项和第五项,试求数列的通项 公式及前项和.
本小题满分10分) 已知sin. (1)求的最小正周期. (2)若A,B,C是锐角△ABC的内角,其对边分别是,且, 试判断△ABC的形状.
选修4—5:不等式选讲。设函数 (1)求不等式的解集; (2)若不等式(,,)恒成立,求实数的范围.
选修4—4:坐标系与参数方程。在极坐标系中,如果为等边三角形ABC的两个顶点,求顶点C的极坐标.()