(本小题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为为坐标原点,记(1)求随机变量的最大值,并求事件“取最大值”的概率;(2)求的分布列及数学期望。
如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=. (1)求证:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值
在中,角所对的边为已知. (1)求值;(2)若面积为,且,求值.
已知函数 (1)当的取值范围; (2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.
(本小题满分12分)在数列中,; (1)设,求证数列是等比数列; (2)设,求证:数列是等差数列; (3)求数列的通项公式及前n项和的公式。