设函数(),其中.(1)当时,讨论函数的单调性;(2)若函数仅在处有极值,求的取值范围;(3)若对于任意的,不等式在上恒成立,求的取值范围.
(本小题共10分) 已知的三个角的对边分别为,且成等差数列,且。数列是等比数列,且首项,公比为。 (1)求数列的通项公式; (2)若,求数列的前项和。
设函数 (Ⅰ)解不等式; (Ⅱ)若不等式≤的解集为空集,求的取值范围。
设函数. (Ⅰ)当时,解不等式; (Ⅱ)当时,恒成立,求实的取值范围.
已知曲线C:(t为参数), C:(为参数)。 (Ⅰ)化C,C的方程为普通方程,并说明它们分别表示什么曲线; (II)若C上的点P对应的参数为,Q为C上的动点,求中点到直线(t为参数)距离的最大值。
在极坐标系中,直线的方程为,在直角坐标系中,圆的参数方程为. (Ⅰ)判断直线与圆的位置关系; (Ⅱ)设点是曲线上的一个动点,若不等式有解,求的取值范围.