如图,已知直线()与抛物线:和圆:都相切,是的焦点.(Ⅰ)求与的值;(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成角的余弦值; (Ⅲ)求面与面所成二面角的余弦值。
已知函数在内有极值,求实数的范围。
设,(为实数且是虚数单位),求函数的值域。
设函数且。 (Ⅰ)求的解析式及定义域。(Ⅱ)求的值域。
已知函数. (Ⅰ)当时,求曲线在处的切线方程() (Ⅱ)已知为函数的极值点,求函数的单调区间。