如图,已知直线()与抛物线:和圆:都相切,是的焦点.(Ⅰ)求与的值;(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
某工厂今年1月、2月、3月生产某产品分别为1万件,1.2万件, 1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=a·bx+c(a,b,c)为常数。已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.
设函数(a为实数)(1)当a=0时,若函数的图象与的图象关于直线x=1对称,求函数的解析式;(2)当a<0时,求关于x的方程=0在实数集R上的解.
设函数f(x)对任意x,y,都有,且时,f(x)<0,f(1)=-2.⑴求证:f(x)是奇函数;⑵试问在时,f(x)是否有最值?如果有求出最值;如果没有,说出理由.
若四位数的各位数码中,任三个数码皆可构成一个三角形的三条边长,则称为四位三角形数,试求所有四位三角形数的个数.
数列满足:;令;求