如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
设:函数在内单调递减;:曲线与轴交于不同的两点.(1)若为真且为真,求的取值范围;(2)若与中一个为真一个为假,求的取值范围.
将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:(1)求两点数之和为5的概率;(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标的点在圆的内部的概率.
已知函数.(为常数)(1)当时,①求的单调增区间;②试比较与的大小;(2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
已知椭圆的右焦点为,离心率,是椭圆上的两动点,动点满足(其中实数为常数).(1)求椭圆标准方程;(2)当,且直线过点且垂直于轴时,求过三点的外接圆方程;(3)若直线与的斜率乘积,问是否存在常数,使得动点满足,其中,若存在求出的值,若不存在,请说明理由.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中, 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.