如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
已知椭圆C的焦点F1(-,0)和F2(,0),长轴长6。 (1)求椭圆C的标准方程。 (2)设直线交椭圆C于A、B两点,求线段AB的中点坐标。
为何值时,直线和曲线有两个公共点?有一个公共点? 没有公共点?
双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线的标准方程.
已知椭圆的中点在原点且过点,焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程.
设,. (1)若恒成立,求实数的取值范围; (2)若时,恒成立,求实数的取值范围; (3)当时,解不等式.