设是满足不等式≥的自然数的个数.(1)求的函数解析式;(2),求;(3)设,由(2)中及构成函数,,求的最小值与最大值.
已知方程有两个不相等的负实根;不等式的解集为.若“∨”为真命题,“∧”为假命题,求实数的取值范围.
已知数列的前项和,求证:是等比数列,并求出通项公式.
求不等式的解集.
数列的前n项和为, (I)证明:数列是等比数列; (Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.
已知函数. (Ⅰ)当时,恒成立,求实数的取值范围; (Ⅱ)若对一切,恒成立,求实数的取值范围.