已知矩形与正三角形所在的平面互相垂直, 、分别为棱、的中点,,,(1)证明:直线平面;(2)求二面角的大小.
已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点.(Ⅰ)求函数的解析式;(Ⅱ)在中,角的对边分别为,且,求的取值范围.
设和是函数的两个极值点,其中,.(1)求的取值范围;(2)若,求的最大值.注:e是自然对数的底.
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段EF上.(1)求异面直线与所成的角;(2)求二面角的余弦值.
已知数列,,,.(1)求证:为等比数列,并求出通项公式;(2)记数列 的前项和为且,求.
用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为m,(1)求关于的解析式;(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).