已知,数列的前n项和为,点在曲线上,且。(1)求数列的通项公式;(2)数列的前n项和为,且满足,,求证:数列是等差数列,并求数列的通项公式;
设f(x)=ln(1+x)-x-ax2. (1)当x=1时,f(x)取到极值,求a的值; (2)当a满足什么条件时,f(x)在区间[-,-]上有单调递增区间?
已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线的方程; (2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标; (3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.
设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0. (1)求f(x)的解析式; (2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
已知函数f(x)=x2-alnx(a∈R). (1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值; (2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.
已知函数f(x)=x3-4x2+5x-4. (1)求曲线f(x)在点(2,f(2))处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程.