已知,数列的前n项和为,点在曲线上,且。(1)求数列的通项公式;(2)数列的前n项和为,且满足,,求证:数列是等差数列,并求数列的通项公式;
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求的取值范围.
选修4—5:不等式选讲已知函数(1)若不等式的解集为,求实数a,m的值。(2)当a =2时,解关于x的不等式
选修4—1:几何证明选讲如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且(1)求证:A、P、D、F四点共圆;(2)若AE·ED=24,DE=EB=4,求PA的长。
已知,函数(1)求的极小值;(2)若在上为单调增函数,求的取值范围;(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围.
设椭圆的左、右焦点分别为,上顶点为,离心率为 , 在轴负半轴上有一点,且(1)若过三点的圆 恰好与直线相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.