为了迎接省运会,为了降低能源损耗,鹰潭市体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值
已知函数,,且在点(1,)处的切线方程为。 (1)求的解析式; (2)求函数的单调递增区间; (3)设函数,若方程有且仅有四个解,求实数a的取值范围。
已知函数同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立 设数列的前项和为 (1)求数列的通项公式; (2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(为正整数),求数列的变号数
已知函数f(x)=x2-mlnx (1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围; (2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米 (1)要使矩形AMPN的面积大于32平方米,则AN的长度应在什么范围内? (2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小值
设函数的最大值为,最小值为,其中. (1)求、的值(用表示); (2)已知角的顶点与平面直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点.求的值.