已知矩形内接于圆柱下底面的圆,是圆柱的母线,若,,此圆柱的体积为,求异面直线与所成角的余弦值.
(本小题满分12分) 设函数f(x)=(x+2)2-2ln(x+2). (Ⅰ)求f(x)的单调区间;(Ⅱ)若关于x的方程f(x)=x2+3x+a在区间[-1,1]上只有一个实数根,求实数a的取值范围.
(本小题满分12分) 已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点,且PC⊥AB. (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求点B到平面PAC的距离.
(本小题满分12分) 不透明盒中装有10个形状大小一样的小球,其中有2个小球上标有数字1,有3个小球上标有数字2,还有5个小球上标有数字3.取出一球记下所标数字后放回,再取一球记下所标数字,共取两次.设两次取出的小球上的数字之和为ξ. (Ⅰ)求随机变量ξ的分布列; (Ⅱ)求随机变量ξ的期望Eξ.
(本小题满分12分) 已知函数f(x)=2sin(x+)cos(x+)+2cos2(x+)-,α为常数.(Ⅰ)求函数f(x)的周期;(Ⅱ)若0≤α≤π时,求使函数f(x)为偶函数的α值.
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算数平方根成正比.已知投资1万元时两类产品的收益分别是0.2万元和0.8万元. 分别写出两种产品的收益与投资的函数关系; 该家庭有30万元资金全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?