(本小题满分12分)已知数列{an}的各项均为正数,Sn为其前n项和;且Sn =" 2" an -2(n∈N*);(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn,且bn= (n∈N*);求证:对于任意的正整数n,总有Tn <2;(3)在正数数列{cn}中,设 (cn) n+1 = an+1(n∈N*);求数列{cn}中的最大项。
是否存在等差数列,使对任意都成立?若存在,求出数列的通项公式;若不存在,请说明理由.
已知的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.
若展开式中第二、三、四项的二项式系数成等差数列. 求n的值; (2)此展开式中是否有常数项,为什么?
三个女生和五个男生排成一排. (1)如果女生必须全排在一起,有多少种不同的排法? (2)如果女生必须全分开,有多少种不同的排法? (3)如果两端都不能排女生,有多少种不同的排法? (4)如果两端不能都排女生,有多少种不同的排法? (5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?
一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单 (1)前4个节目中要有舞蹈,有多少种排法? (2) 3个舞蹈节目要排在一起,有多少种排法? (3) 3个舞蹈节目彼此要隔开,有多少种排法?