(本小题满分12分)设a∈R,函数f(x)= e -x(ax2 + a + 1),其中e是自然对数的底数;(1)求函数f(x)的单调区间;(2)当 -1<a<0 时,求函数f(x)在 [ 1,2 ] 上的最小值。
已知,函数. (Ⅰ)当时,求函数的最小值; (Ⅱ)当时,讨论的图象与的图象的公共点个数.
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.
已知数列满足:,,(),,,分别是公差不为零的等差数列的前三项. (Ⅰ)求的值; (Ⅱ)求证:对任意的,,,不可能成等比数列.
在△中,角所对的边分别为.已知. (Ⅰ)求角的大小; (Ⅱ)若,且△的面积为,求边的长.
已知,函数. (Ⅰ)当时,求函数的最小值; (Ⅱ)讨论的图象与的图象的公共点个数.