如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).⑴求点C的坐标.⑵当0<t<5时,求S与t之间的函数关系式.⑶求⑵中S的最大值.⑷当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
先化简,再求值:,其中,.
将下列各数在数轴上表示出来: -2, , 3, , -1.5.
把下列各数分别填入相应的大括号里: ﹣5.13, 5,﹣|﹣2|, +41, -, 0,-(+0.18), . 正数集合{}; 负数集合{}; 整数集合{}; 分数集合{}.
在如图所示的平面直角坐标系中,直线AB:y=k1x+b1与直线AD:y=k2x+b2相交于点A(1,3),且点B坐标为(0,2),直线AB交x轴负半轴于点C,直线AD交x轴正半轴于点D. (1)求直线AB的函数解析式; (2)根据图象直接回答,不等式k1x+b1<k2x+b2的解集; (3)若△ACD的面积为9,求直线AD的函数解析式; (4)若点M为x轴一动点,当点M在什么位置时,使AM+BM的值最小?求出此时点M的坐标.
已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC. (1)如图,若点O在边BC上,求证:AB=AC; (2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由; (3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.