(本小题满分 分)已知直线与抛物线相切于点,且与轴交于点,定点的坐标为.(Ⅰ)若动点满足,求点的轨迹;(Ⅱ)若过点的直线(斜率不等于零)与(I)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围.
已知函数在闭区间上的最大值记为(1)请写出的表达式并画出的草图;(2)若, 恒成立,求的取值范围.
如图,在平面直角坐标系xoy中,角α的始边与x轴的非负半轴重合且与单位圆相交于A点,它的终边与单位圆相交于x轴上方一点B,始边不动,终边在运动.(1)若点B的横坐标为,求tanα的值;(2)若△AOB为等边三角形,写出与角α终边相同的角β的集合;(3)若,请写出弓形AB的面积S与α的函数关系式,并指出函数的值域.
集合,集合(1)求集合;(2)若不等式的解集为,求的值.
(本题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数学期望);(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小,并证明之。
(本题满分12分)已知函数(1)求函数的最小值;(2)解不等式.