(本小题满分 分)已知直线与抛物线相切于点,且与轴交于点,定点的坐标为.(Ⅰ)若动点满足,求点的轨迹;(Ⅱ)若过点的直线(斜率不等于零)与(I)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围.
设函数f(x)=cos(2x+)+sinx.(Ⅰ)求函数f(x)的最大值和最小正周期.(2)设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,求sinA.
设是等差数列,是各项都为正数的等比数列,且,,.(Ⅰ)求、的通项公式;(Ⅱ)求数列的前n项和。
在中,为锐角,角所对的边分别为,且;(I)求的值;(II)若,求的值。
设函数. (1)求函数在区间的最小值; (2)当时,记曲线在处的切线为,与轴交于点,求证:.
设数列的前项和为,且满足,,. (1)猜想的通项公式,并加以证明; (2)设,且,证明:.