(本小题满分12分)设数列的前项和为,且满足.(Ⅰ)求,,,的值并猜想这个数列的通项公式(Ⅱ)证明数列是等比数列.
一个多面体的直观图和三视图如下:(其中分别是中点) (1)求证:平面; (2)求多面体的体积.
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点. (1)设N为EF上一点,当时,有DN ∥平面AEM,求 的值; (2)试探究点M的位置,使平面AME⊥平面AEF。
如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点. (1)求证:平面平面; (2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1; (3)求四面体EFGB1的体积.
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4, E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点. 沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图). (1)当=2时,求证:BD⊥EG ; (2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值; (3)当取得最大值时,求二面角D-BF-E的余弦值.
如图,四棱锥的侧面垂直于底面,,,在棱上,是的中点,二面角为求的值;